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Abstract. Nuclear density functional theory (DFT) is the only microscopic, global

approach to the structure of atomic nuclei. It is used in numerous applications, from

determining the limits of stability to gaining a deep understanding of the formation

of elements in the universe or the mechanisms that power stars and reactors. The

predictive power of the theory depends on the amount of physics embedded in the

energy density functional as well as on efficient ways to determine a small number of free

parameters and solve the DFT equations. In this article, we discuss the various sources

of uncertainties and errors encountered in DFT and possible methods to quantify these

uncertainties in a rigorous manner.
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1. Introduction

The past decade has seen two major developments that have had a profound impact on

nuclear theory. First, progress in nuclear astrophysics has increased the need for reliable

data in neutron-rich and superheavy nuclei. This data has become a critical input to

reaction networks, neutron stars, and supernovae simulations [1, 2]. Large uncertainties

in predictions (e.g., of the abundance of elements in the universe) have been traced to

uncertainties in the properties of both ground and excited states of the nuclei involved

during the formation of elements. Second, targeted programs by funding agencies have

fostered the use of leadership-class computing facilities in science. In particular, the

UNEDF collaboration has deployed high-performance computing (HPC) methods on

various problems in nuclear theory [3].

The increased need for reliable, accurate data in systems where no experimental

information is available has shined a spotlight on the predictive power of nuclear models.

It has become increasingly clear that theoretical predictions must be accompanied with

estimates of their error bars. Standard methods of statistics are mature by now, but

often their dissemination has been hampered by their high computational cost for many

problems. In this respect, the availability of ever more powerful supercomputers and

concomitant spread of HPC techniques can be seen as game changers.

Among nuclear models, density functional theory (DFT) plays a unique role: it

is currently the only global approach to nuclear structure that is applicable across the

whole nuclear chart [4]. It thus features prominently in high-level applications of nuclear

science such as nuclear fission [5], superheavy element predictions [6], fundamental

symmetries [7, 8], and neutrinoless double-beta decay [9]. In all these applications,

high-accuracy, high-precision DFT calculations are essential, yet relatively few attempts

have been made to estimate the uncertainties underlying these calculations.

In this paper, we discuss some of the issues related to the estimation of theoretical

uncertainties in nuclear DFT. In section 2, we discuss the essential features of the theory.

In section 3, we analyze various sources of errors of DFT calculations, before presenting

some of the techniques used to propagate these errors in model predictions in section 4.

Section 5 gives a brief summary and outlook.

2. Nuclear Density Functional Theory

In the context of nuclear structure, density functional theory exists in two variants:

the self-consistent mean field (SCMF) theory and the energy density functional (EDF)

theory. We now discuss the main assumptions of both approaches and introduce the

notation used throughout this paper.

2.1. Overview of the Theory

The first modern formulation of DFT was from the work of Hohenberg, Kohn, and

Sham on electronic structure theory [10, 11]. Since then, considerable effort has been
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devoted to perfecting the approach, including extensions for excited states, statistical

ensembles, and time-dependent DFT; see [12, 13] for reviews. The central assumption of

DFT is that a many-body system of electrons interacting via the Coulomb force can be

recast into an independent-particle picture. In this picture, the energy of the interacting

system is expressed as an (unknown) functional of the density of electrons n(r). The

DFT equations are formally identical to the Hartree-Fock (HF) equations.

Contrary to many-electron systems, the nucleus is self-bound, and the interaction

is unknown a priori. Until recently the prevailing approach in nuclear structure has

thus been slightly different from electronic DFT. The starting point has often been an

effective nuclear force (or pseudopotential) V̂ , which is designed so that, when combined

with the Hartree-Fock approximation to the many-body problem, essential properties

of nuclei (e.g., saturation density, masses, radii, shell structure) are reproduced. In

essence, this is similar to DFT, except that the energy density H is explicitly derived

from the effective potential. This approach is known as the self-consistent mean field

(SCMF) approach to nuclear structure [4].

Scientists have long recognized that pairing correlations are essential ingredients

for explaining the structure of low-lying excited states and differences between even and

odd nuclei. Given the form of the effective interaction V̂ , the most salient features of

pairing are naturally incorporated in the SCMF theory by upgrading from the HF to the

Hartree-Fock-Bogoliubov (HFB) approximation for the ground-state wave function. In

practice, the energy density now involves an additional term, the pairing energy density,

which is a functional of the pairing tensor (or pairing density) [14].

Guided by the Kohn-Sham and Hohenberg-Kohn theorems (and their generalization

to atomic nuclei [15]), one may therefore decide to view the energy density H of the

system as the fundamental unknown of the theory, inasmuch as it is a functional of the

one-body density and two-body pairing tensor H[ρ, κ]. This is the spirit of the energy

density functional (EDF) variant of DFT. In principle, there exists a functional H0 that

will give the exact energy of the system for the solution ρ, κ of the HFB equations and

for which all many-body correlations will be included. Alternatively, one may decide to

retain the effective interaction V̂ as the central component of the theory and improve

upon the HF and HFB approximations, typically by choosing a different ansatz for the

nuclear wave function.

2.2. Model Parameters and Notations

In this paper, we view both the EDF and SCMF approaches as models of nuclear

structure. In practice, they are thus characterized by a finite number, nx, of model

parameters x = (x1, . . . , xnx
). In nuclear DFT, model parameters are not specified by

some underlying theory: they must be determined based on some experimental data.

By d = (d1, . . . , dnd
) we denote the set of nd experimental data points used to fit the

model. These data points can be of different types (e.g., atomic masses, excitation

energies, radii, transition strengths); see section 3.2.1.
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Given the parameters x, the value yi(x) of an observable computed in DFT differs

from the experimental value di by some error ǫi. We collect these calculated observable

values and error values in y = y(x) and ǫ, respectively. In the following, we will use

Greek indices α to denote parameters, xα, and Latin indices to denote observables, di
or yi.

For the sake of completeness, we mention an important conceptual difference

between the EDF and SCMF approaches to nuclear structure. In the pure EDF

approach, the DFT equations are always solved at the HFB level. All information

about the nucleus is assumed to be encapsulated in the energy density H. In principle,

it should include both short- and long-range correlations, symmetry restoration effects,

and so forth. The EDF picture is thus characterized by a single model with nx

parameters x. By contrast, the model parameters of the SCMF approach are those of the

effective Hamiltonian. For a given Hamiltonian, however, a hierarchy of approximations

is available, which reflect the different ansatzes for the nuclear wave function. his

observation has important practical consequences when it comes to model uncertainties:

if the fit of the Hamiltonian parameters x is performed at a given approximation, say

HF, it is not, in principle, applicable at another level. Therefore, the fit of an effective

force within the SCMF approach should always be done at each level of approximation

for the ground-state wave function. Clearly, this requirement increases considerably the

difficulty of the task. In the rest of this paper, we will illustrate our considerations

with studies of the Skyrme functional in the context of the EDF rather than the SCMF

approach.

2.3. Sources of Errors

One may distinguish three main sources of uncertainties and errors in nuclear DFT:

Model Error - The most difficult source of uncertainties to quantify comes from the

choice of the energy density. For example, relativistic EDFs are specified by

the number and type of mesons that will be considered and whether coupling

constants will be made density dependent [16, 17]. Nonrelativistic EDFs may be

derived from a Skyrme-like, zero-range, two-body effective force [18] or a Gogny-

like, finite-range, two-body force [19], with or without specific terms such as tensor

or generalized density dependencies [20, 21]; alternatively, one may substitute all

density dependencies by effective three-body forces [22] or, following the spirit of

electronic DFT, build up the EDF by coupling densities and currents up to some

order [22, 23, 24]. When EDFs are derived from an effective Hamiltonian, the choice

of the ansatz for the ground-state and excited-state wave functions (HF, HFB, etc.)

introduces additional uncertainties. Quantifying these sources of uncertainties can

be done only on an empirical basis by comparing with experimental data; see section

3.1.

Fitting Bias - The EDF itself, irrespective of its origin, always contains a number of

free parameters, from about a dozen for standard Skyrme or Gogny forces up to
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about 30 for the generalized Skyrme forces used in mass models [20]. In fact, even

for a given EDF, there is sometimes an ambiguity about the choice of parameters:

for example, the term ~
2/2m, in principle a constant, has often be adjusted along

the parameters of the Skyrme EDF; see Table II in [4]; in relativistic meson-

exchange EDFs, the mass of some mesons is also sometimes taken as adjustable

parameter [17]. The determination of these parameters requires experimental data,

an optimization algorithm, and, most often, a number of hidden assumptions when

solving the DFT equations (spherical symmetry, time-reversal symmetry, etc.).

Clearly, the choice of the data, the performance of the optimization algorithm, and

the various hypotheses made in the fit will be a source of errors. In the past few

years, the nuclear theory community has expended considerable effort to quantify

the resulting uncertainties [25, 26, 27]; see section 3.2.

Numerical Implementation - Given the form of the EDF and a set of coupling

constants, actual calculations are performed based on a given numerical

implementation. In practice, the DFT equations can be solved in multiple ways:

• In a basis formed by, for example, the eigenstates of the harmonic oscillator

(HO) [28, 29]

• In coordinate space by mesh discretization and direct numerical integration

[30, 31]

• On a lattice [32]

• With finite element [33] or multiwavelet resolution analysis [34].

Each of these implementations possesses inherent, unavoidable numerical errors.

Basis expansions are always truncated, possibly inducing a dependence on

additional parameters (e.g., the oscillator frequency of the HO). The precision of

mesh or lattice calculations is also contingent on the resolution of the underlying

grid. We give additional examples in section 3.3.

3. Estimating Errors in Nuclear DFT

In this section, we provide further details about the various sources of uncertainties in

nuclear DFT calculations. We begin with model errors and emphasize that they are

extremely difficult to completely isolate. We then present several factors impacting the

fit of a given energy density functional. We close this section with a reminder about

numerical errors due to the particular implementation of the DFT equations.

3.1. Model Errors

As discussed in section 2.3, model errors in DFT can only be estimated on an empirical

basis by carefully comparing predictions of selected observables obtained with different

functionals. For this comparison to be meaningful, one should in principle ensure that

the optimization procedure used to determine the coupling constants of the functionals
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was the same for all EDFs considered and that the numerical implementation is also

identical. In practice, this is rarely the case.

Mass models are an example where such a comparison is sometimes possible. The

original mass model from the Bruxelles-Montréal collaboration was based on a standard

Skyrme force and the BCS approximation [35]. In subsequent incarnations of the model,

the HFB approximation to the pairing solution was substituted for the BCS one, more

realistic pairing forces were introduced, and several phenomenological corrections were

added. Although the experimental data used to perform the fit also evolved over the

years, in several instances the experimental data, the optimization procedure, and the

DFT solver used are identical, and only the form of the functional is different. For

example, in [36], the performance of a generalized Skyrme force is compared with that

of a standard Skyrme force, all things being equal.

Another (unpublished) example comes from the UNEDF collaboration and the

UNEDF1 protocol [25]. This original parametrization of the Skyrme EDF was performed

at the HFB approximation with an approximate restoration of particle number using

the seniority limit of the Lipkin-Nogami (LN) prescription. Details of the fit itself –

choice of data, form of the χ2, numerical algorithms, and so on – can be found in the

publications by the UNEDF collaboration [37, 25, 26]. The same fit as UNEDF1 was

repeated at the pure HFB level, that is, without the LN prescription. All calculations

were performed with the HFBTHO solver and the POUNDERS algorithm [28, 38, 39].

Results are summarized in Table 1.

Table 1. Comparison of UNEDF1 parametrization with and without the Lipkin-

Nogami approximate particle number restoration. ρc is in fm−3; ENM/A, KNM ,

aNM
sym , and LNM

sym are in MeV; 1/M∗
s is dimensionless; Cρ∆ρ

t and Cρ∇J
t , t = 0, 1 are in

MeV fm5; and V n
0 and V p

0 are in MeV fm3.

Parameters UNEDF1 UNEDF1-HFB

ρc 0.158707 0.156247

ENM/A -15.80000 -15.800000

KNM 220.00000 244.839379

aNM
sym 28.986789 28.668204

LNM
sym 40.004790 40.109081

1/M∗
s 0.992423 1.067970

Cρ∆ρ
0 -45.135131 -45.599763

Cρ∆ρ
1 -145.382168 -143.935074

V n
0 -186.065399 -234.380010

V p
0 -206.579594 -260.437001

Cρ∇J
0 -74.026333 -73.946388

Cρ∇J
1 -35.658261 -51.912548

As anticipated, the major difference between the two parameterizations is in the

pairing strengths, which are much larger in magnitude when the LN prescription is

dropped. The two other notable changes are a sizable increase of the incompressibility

KNM and a sizable decrease of the scalar effective mass. The r.m.s. deviations for
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the observables used in the fit are listed in Table 2. Overall, the original UNEDF1

model, based on the HFB+LN approximation, performs better than the UNEDF1-HFB

model. Since the data used in the fit – the χ2 objective function, the DFT solver and

the optimization algorithms – and even the number of actual parameters, are exactly

the same in both cases, it is tempting to interpret the differences as model differences.

However, this is not exactly true: the optimization is always initialized from a given

point, and one cannot dismiss a dependence of the final result on the starting point, see

discussion in [40] in this Focus Issue. In fact, there is no guarantee that the minimum

obtained in any of these optimizations is the absolute minimum of the 12-dimensional

hypersurface. Even in this near-ideal calibration, therefore, it is almost impossible to

completely disentangle model uncertainties and fitting bias. In the next section, we

discuss these fitting biases in more detail.

Table 2. Root-mean-square deviations for each observable in the UNEDF1

optimization protocol compared for UNEDF1 and UNEDF1-HFB. All r.m.s. values

are in MeV, except the ones for proton radii, which are in fm.

R.m.s. UNEDF1 UNEDF1-HFB

Deformed masses 0.721 0.776

Spherical masses 1.461 1.836

Proton radii 0.016 0.022

OES neutrons 0.023 0.051

OES protons 0.080 0.075

Fission isomer 0.208 0.558

3.2. Fit of Model Parameters

In practice, parameter estimation comes down to solving an optimization problem.

Given a probability distribution function for the errors ǫ, a common method of

determining model parameter values is to maximize the associated likelihood function.

For specific choices of the distribution, this is equivalent to a least-square fitting, where

a χ2 function of the squared errors ǫ2 is minimized. In this section, we give a brief

example of how the form of the χ2 function may affect the least-square minimization.

3.2.1. Sensitivity on Experimental Data. An important feature of DFT is that it is a

global approach to nuclear structure, which is meant to describe a variety of nuclear

properties, including ground and excited states, and collective motion [4]. In order

for a functional (or effective interaction) to be truly predictive, each parameter thus

must be carefully constrained. Doing so could be challenging, however, because certain

parameters may be especially sensitive to specific experimental data and much less

sensitive to other data. This fact was pointed out in the first systematic studies

of uncertainties in DFT by means of a singular value decomposition of the model

parameters [41]. The authors found that nuclear binding energies were sensitive only
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to 3 of the 8 parameters of a standard Skyrme functional. Similar conclusions were

obtained when looking at single-particle energies in doubly magic spherical nuclei [27].

In view of these results, the strategy of nuclear mass models, where the single source

of experimental data is atomic masses, may appear too restrictive: while it will provide

excellent agreement with masses, it will do so at the price of having many parameters

ill-constrained. The predictive power of such an (overconstrained) model for observables

that are not masses should be questioned.

In a least-square fit, the usual way to incorporate different data types is to take a

composite χ2 objective function of the form

χ2(x) =
1

nd − nx

nT
∑

t=1

nt
∑

j=1

(

ytj(x)− dtj
σt

)2

, (1)

where nT denotes the number of different data types, nt the number of data points for

type t, nd =
∑

t nt the total number of data points over all types, and nx the number

of model parameters. The calculated value of data point number j of type t is denoted

by ytj , with dtj the corresponding experimental value. Because there are different types

of data, relative distances must be properly normalized by the quantity σt (which, in

the general case, could also vary within a data type: σtj). If we viewed all the data

di ≡ dtj as independent random variables following a normal distribution centered about

the model, N (yi, σi), then the quantity defined by Eq. (1) would follow the actual χ2

probability distribution function. This is the reason that σt is interpreted as an estimate

of the error on the parameter of type t. Note that experimental errors on the data d

are not considered here.

3.2.2. Objective Function. As shown in Eq. (1), the objective function explicitly

depends on an estimate of the choice for the initial errors σt of data type t, and it was

shown earlier that this dependence could be significant [42]. In this section, we further

illustrate this point in the realistic setting of the UNEDF1 optimization protocol. As a

reference, we take the UNEDF1-HFB parametrization of Table 1 and look in particular

at the standard deviation of the odd-even staggering (OES) and of the fission isomer

excitation energy. These two particular data types indeed appear to be the main drivers

of the UNEDF1 parametrization; see fig. 3 in [25].

Table 3 shows the r.m.s. deviations of each observable in the UNEDF1 optimization

protocol when the standard deviation of the OES data varies from 0.025 MeV to 0.100

MeV by a step of 0.025 MeV. For reference, the UNEDF1-HFB solution, which was

obtained with σOES = 0.050 MeV, is also shown. We observe overall large variations,

especially in the reproduction of the masses and the fission isomer excitation energy.

Interestingly, the UNEDF1-HFB obtained with the original weights probably gives the

best compromise between all different types of observables.

The situation is analogous when we vary the standard deviation of the fission isomer

excitation energy, shown in table 4. Here again, there are relatively large variations of

both the deformed masses and the excitation energies. Unfortunately, the two variations
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Table 3. Root-mean-square deviations for each observable in the UNEDF1

optimization protocol compared for UNEDF1-HFB for a few different values of the

standard deviation σOES (in MeV) of the OES data. All r.m.s. values are in MeV,

except the ones for proton radii, which are in fm.

σOES = 0.025 UNEDF1-HFB σOES = 0.075 σOES = 0.100

Deformed masses 0.944 0.776 2.596 0.806

Spherical masses 2.427 1.836 2.669 1.718

Proton radii 0.022 0.022 0.022 0.022

OES neutrons 0.012 0.051 0.065 0.080

OES protons 0.043 0.074 0.075 0.072

Fission isomer 0.809 0.558 0.535 0.530

are anticorrelated: improving the agreement for deformed masses requires an increase

in σFI , which degrades the quality of reproduction of the excitation energies. However,

the effect is nonlinear: masses are degraded by 36% when dividing σFI by a factor of 2,

but improved by a mere 6% when multiplying them by a factor of 2. The sweet spot of

the optimization is probably somewhere between 0.25 and 0.50 MeV.

Table 4. Same as Table 3 for variations of the standard deviation σFI (in MeV) of

the fission isomer excitation energy.

w = 0.25 UNEDF1-HFB w = 0.75 w = 1.00

Deformed masses 1.057 0.776 0.748 0.730

Spherical masses 1.808 1.836 1.879 1.893

Proton radii 0.023 0.022 0.021 0.021

OES neutrons 0.057 0.051 0.044 0.042

OES protons 0.079 0.074 0.073 0.072

Fission isomer 0.279 0.558 0.794 0.903

The relatively large variability of optimization results under a change of the

standard deviations σt for each data type is a significant source of model uncertainties.

At this point, there is no magic recipe that would completely remove them. Bayesian

approaches could possibly be used to provide alternative estimates of these errors.

3.3. Numerical Implementation

Of all the possible sources of uncertainties in nuclear DFT computations, numerical

errors stemming from the particular implementation of DFT equations in a computer

code are the easiest to quantify. The vast majority of DFT solvers are based on the

expansion of HF(B) wave functions on a basis. Of particular interest is the basis made

of the eigenstates of the harmonic oscillator: the HO is a decent approximation of the

nuclear mean-field, at least for deeply bound states; basis functions are analytical; and,

most important, it is the only example where there is an analytical separation between

center of mass and relative motion in a many-body system.
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When solving the HFB equations in the HO basis, several approximations can

be imposed on the form of the solutions. In the case of the nonrelativistic Skyrme

pseudopotential, there exist three published, open-source versions of DFT solvers

assuming spherical symmetry [24], axial and time-reversal symmetry [28], or no

particular symmetry at all [29]. These three solvers have been carefully benchmarked

against one another and give essentially identical results. A similar package of relativistic

DFT solvers has recently been published [43].

Nuclear DFT calculations in the HO basis are subject to truncation errors. Because

of the finite size of the basis, results become dependent on the oscillator frequency ω0

or, equivalently, the oscillator length b0. When computing deformed nuclear states, it

is convenient to also deform, or “stretch,” the basis states to accelerate convergence:

basis functions are then characterized either by the frequencies ω = (ω⊥, ωz) (cylindrical

coordinates, 2D) or ω = (ωx, ωy, ωz) (Cartesian coordinates, 3D) or by some spherical-

equivalent frequency ω0 and one (or several) deformation parameters. See, for example,

the discussion in [28].
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Figure 1. Comparison between the pace of convergence of DFT calculations using

HO expansions. Both figures are obtained at the HFB approximation with the SkM*

functional and a surface-volume pairing. Left: Total energy of 40Ca as function of the

oscillator length b (in fm) for different number of oscillator shells Nshell. Right: Same

for the configuration defined by 〈Q̂20〉 = 200 b and 〈Q̂40〉 = 50 b2 in 240Pu. Stretched

HO bases with different deformations β = 0.5 and β = 1.0 are used.

This model dependence is illustrated in two extreme cases in fig. 1. In the left

panel, we show the convergence of a simple HF calculation in the ground state of 40Ca;

in the right panel, we show the convergence of a deformed HFB calculation defined

by 〈Q̂20〉 = 200 b and 〈Q̂40〉 = 50 b2 along the fission path of 240Pu. As expected,

the sensitivity on basis parameters is much more pronounced in heavier nuclei and for

very deformed configurations: across the range in values for b0, Nshell and the basis

deformation β shown in the figure, the total energy varies by about 0.7 MeV in 40Ca

and about 7 MeV in 240Pu. Including pairing correlations also requires larger bases,

since higher-lying states may become occupied. In mass A > 200, one may estimate

that ground-state calculations are subject to an error greater than 1 MeV even for
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large HO bases with about N = 20 full shells; this error may reach up to 3-4 MeV in

very deformed configurations near the scission point [44]. Early attempts were made to

quantify this numerical truncation error without performing a full-scale calculation [45].

Because of the nonlinearity and density dependencies of standard EDF, it is not clear

whether extrapolation techniques developed in the ab initio community might also be

applicable [46, 47].

DFT calculations performed directly in coordinate space are often considered more

precise than basis calculations. We show in fig. 2 a comparison between the pace of

convergence of a typical HFB calculation in two different numerical implementations:

the direct numerical integration of DFT equations in coordinate space of the code

HFBRAD [30] and the expansion on spherical HO basis of HOSPHE [24]. Calculations

were performed on 120Sn with the SkM* functional and a simple surface-volume pairing

with a cut-off of Ecut = 60 MeV. Since the Coulomb potential is treated differently in

the two codes, it was neglected here for the sake of comparison. The rate of convergence

is approximately exponential in the HO basis, while it is roughly Gaussian in coordinate

space. Note that in order to achieve the same precision given by a mesh size of h = 0.05

fm (routinely achieved with HFBRAD), nearly 60 full HO shells are necessary.
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Figure 2. Comparison between the pace of convergence of a DFT calculation

in coordinate-space, red squares, and configuration space (HO basis), black circles.

Results were obtained by setting both direct and exchange terms of the Coulomb

potentials to 0. The HO basis results are optimized with respect to the oscillator

frequency. Coordinate space calculations were performed with HFBRAD in a box of

20 fm [30], HO calculations with HOSPHE [24].

The cost of directly integrating of DFT equations in coordinate space grows quickly

if spherical symmetry is broken. There exist a couple of axial DFT solvers in coordinate

space [31], but multicore architectures are essential for reasonable run times. To our

knowledge, there is no full 3D solver in coordinate space. For such arbitrary geometries,
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other representations are more promising:

• The lattice representation of the DFT solvers developed by the Bruxelles-Bordeaux-

CEA collaboration is combined with the imaginary time method to solve HFB

equations [32]. Its main appeal is that the numerical precision is essentially

independent of the underlying geometry of the nucleus.

• In a similar spirit, multiresolution wavelet expansions of HFB wave functions

guarantee, by construction, arbitrary precision for observables [34]. Originally

developed for quantum chemistry applications, this technique has been recently

applied to nuclei and has shown great potential for complex problems such as

fission, highly excited nuclei, or nuclear reactions.

• A path hitherto neglected in nuclear structure is finite element analysis. This

technique is widely employed in engineering but has only one application

(published) in the context of the relativistic mean field [33].

4. Uncertainty Quantification in Nuclear DFT

Most of the discussion presented in section 3, especially in subsections 3.1-3.2, was

centered on identifying sources of uncertainties in computations of nuclear properties

and sampling their impact on calculations. For example, comparing predictions of

different energy densities (e.g., Skyrme and Gogny) gives insights into the magnitude of

model uncertainties but does not provide a rigorous metric. The purpose of uncertainty

quantification in nuclear DFT is to systematically estimate error bars in calculations by

deploying a variety of statistical and computational techniques.

4.1. Confidence Intervals and Error Propagation

The UNEDF collaboration was probably the first to popularize the use of traditional

covariance and sensitivity methods to estimate fitting uncertainties [3]. Starting from a

given parameterization x of the model, uncertainties were estimated by using confidence

intervals [26]. We emphasize that several assumptions are made in practice: all the errors

ytj(x) − dtj are independent of one another, each distributed according to a normal

distribution (possibly with different variances σ2
t ). Under these conditions, confidence

intervals can be computed using the central limit theorem result that the estimate x̄ is

asymptotically normal, with mean at the true value x, and nx×nx covariance C(x). We

note that the optimization process of an EDF yields only the central value x̄. In order

to compute the covariance matrix, several additional approximations may be invoked.

The most popular of those is that the model outputs y(x) are effectively linear

with respect to local variations of model parameters x around the optimized solution

x̄. That is, we can write [48]

y(x) ≈ y(x̄) + J(x̄)(x− x̄) (2)
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where J is the sensitivity matrix at x̄, Jαi(x̄) =

(

∂yi(x̄)

∂xα

)

. Under this assumption,

one can show that the covariance matrix reduces to

C = σ2
(

J(x̄)J(x̄)T
)−1

. (3)

Alternatively, one can use the Hessian of the χ2 to estimate the covariance matrix for x̄

C = H−1, where Hαβ(x̄) =

(

nd − nx

2

∂2χ2

∂xα∂xβ

(x̄)

)

.

Uncertainties on x̄ induce uncertainty on the model prediction so that the variance of

a computed observable yj(x̄) is simply given by

Var(yj(x̄)) =
∑

αβ

JαjCαβJβj. (4)

This covariance technique has been recently applied to estimate the information content

of the electric dipole strength [49], the correlation between electric dipole polarizability

and neutron skin [50], the uncertainties on the weak charge form factor [51], and the

neutron skin of neutron-rich nuclei [52].
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Figure 3. Variation of the mass (left panel) and the excitation energy of the fission

isomer (right panel) of 240Pu as a function of each of the 12 parameters of the UNEDF1

functional. All parameters have been normalized to the interval of variation listed in

Table II of [25], column marked “Bounds.”

The two approximations of independent errors and of linearity near the solution

seem the strongest. In fact, researchers pointed out early on that such approximations

were not justified [42, 27]. In fig. 3, we show the variations of the mass of the 240Pu

nucleus and of the excitation energy of its fission isomer as a function of each of the

twelve parameters of the UNEDF1 functional. Each parameter has been normalized

between 0 and 1 based on the “reasonable interval” of variation listed in [25]. We see

that the mass behaves nearly linearly across the parameter range; the excitation energy

of the fission isomer, however, shows some marked deviations, in particular as a function

of the scalar effective mass M∗

s , the isoscalar surface, and the spin-orbit terms Cρ∆ρ
0 and

Cρ∇J
0 . These deviations are more pronounced as we go away from the local solution

given by UNEDF1.
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4.2. Application of Bayesian Statistics in Nuclear DFT

The Bayesian approach is based on Bayes’ theorem for conditional probabilities: the

probability that a continuous alternative A lies between A and A + dA given B and C

is given by

p(A|BC)dA =
p(B|AC)p(A|C)dA
∫

p(B|AC)p(A|C)dA
. (5)

Based on this theorem, the Bayesian approach consists of treating the model parameters

A as genuine random variables depending on some data B and some other circumstances

C. The goal is to find the probability distribution function (p.d.f.) of the random

variable A, that is, the probability of having A between A and A+ dA given B and C.

From the Bayesian perspective, uncertainty regarding the fixed, but unknown, model

parameters is described with probability. In practice, Bayes’ theorem is also often given

as

posterior ∝ likelihood× prior, or

π(x|d) ∝ L(x, d)× p(x).

In the context of nuclear DFT, this equation should be interpreted as follows. We start

with a prior density p(x) for the model parameters x. By default, one may assume

a uniform distribution between some sensible, physically-motivated intervals so that

p(x) ∝ I[x ∈ C], where C denotes the nx-dimensional prior rectangle, nx = 12 for the

UNEDF1 protocol. Based on a set of experimental data d, we then define our likelihood

function L(x, d) based on some χ2(x,d) function, since, for normally distributed random

variables, we know that L(x,d) ∝ p(d|x) ∝ e−χ2(x,d). The posterior distribution will

be estimated by sampling from the posterior density of the parameters, π(x|d).

The Bayesian approach offers numerous advantages. It provides a full probabilistic

description of the model parameters, allowing very general dependence between model

parameters, from which one may deduce the mean, standard deviation, and covariance

matrix, if desired. It can easily incorporate the impact of new data: a posterior

distribution obtained from a given set of data can serve as a prior distribution if

the dataset is extended (or modified). On the other hand, the computational cost

of building a full p.d.f. in the context of nuclear DFT can be significant. In the case of

the UNEDF parameterizations, each χ2 function involves on the order of 100 deformed

HFB calculations, each taking on the order of 5-10 minutes. The parameter space has

dimension 12: in such a space, Markov chain Monte Carlo techniques, which are often

used to build the posterior distribution, could easily require dozens of thousands of

iterations before convergence. Various techniques can be deployed to mitigate this cost,

such as the construction of metamodels (or response functions, or emulators) for the χ2

function.
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5. Conclusions

In this paper, we have discussed the various sources of errors and uncertainties in

nuclear density functional theory. In particular, we have distinguished between model

errors, fitting errors, and numerical implementation errors. Implementation errors are,

in principle, the easiest to control, although they can become significant in specific

applications such as fission, where systems become extremely elongated, or neutron-

rich nuclei near or beyond the drip lines, where the coupling to continuum becomes

significant. Considerable work was recently devoted to estimating and propagating

fitting errors, mostly through covariance techniques. Model errors are unavoidable in

the theoretical description of any quantum many-body problem, in particular in the

nuclear physics case where the interaction is not known. They are by far the most

difficult uncertainties to estimate, and preliminary indications are that they can be very

large. We have also emphasized that Bayesian techniques may represent a promising

path toward a more rigorous quantification of uncertainties in DFT. These methods are

computationally costly but can be deployed in a variety of settings.
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